A substance created in a diamond anvil cell holds the promise to develop high capacity devices in the future.

Researchers from Washington State University have developed a compact material capable of storing vast amounts of energy. The material was created in a diamond anvil cell that can produce extremely high pressures in a small space.

Gizmag reports on the process to develop this material:

The [diamond anvil] cell contained xenon difluoride (XeF2), a white crystal used to etch silicon conductors, squeezed between two small diamond anvils.

At normal atmospheric pressure, the material's molecules stay relatively far apart from each other. But as researchers increased the pressure inside the chamber, the material became a two-dimensional graphite-like semiconductor.The researchers increased the pressure to more than a million atmospheres, comparable to what would be found halfway to the center of the earth. WSU chemistry professor, Choong-Shik Yoo, says all this “squeezing” forced the molecules to make tightly bound three-dimensional metallic “network structures.” In the process, the huge amount of mechanical energy of compression was stored as chemical energy in the molecules' bonds.

$15 provides access to this article and every case-study, interview, and analysis piece that we publish for the next 30 days. Our Premium Subscription also provides access to a database of over 100,000 articles on innovation in brand, customer, and retail experience.
Already a subscriber? Log in